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903. The 8plitting of Terms by Low-symmetry Ligand;field 
Components 

By B. N. FIGGIS 

The splitting, A, between the orbital components of the cubic field terms 
of &electron configurations is derived as a function of the positions of the 
ligand atoms and the strength of the primary cubic ligand-field they create a t  
the central metal atom. The splitting arises from the presence of a com- 
ponent of tetragonal or trigonal symmetry in the ligand-field. This theory 
is applied in a semi-quantitative manner to the tervalent ions of the elements 
Ti-Mn in solid solution in alumina, with the assumption that the trigonal 
ligand-field component is of the same magnitude in each ion. The sign of 
the splittings of the terms of these ions is reproduced, and their relative 
magnitudes are given mostly within a factor of two. 

THE orbital degeneracy of T- and E-terms in a cubic ligand-field is lifted by components 
of lower symmetry.l* Detailed investigations of the spectra, magnetic and electron spin 
resonance properties of complexes of transition elements must take this splitting into 
account.3-8 Very often, it is sufficient to assume that the symmetry is reduced from cubic 
only to tetragonal or trigonal; then the energy levels of the term, in the absence of other 
perturbations, can be expressed in simple form. A T-term is split into components, one 
orbitally non-degenerate, one of two-fold orbital degeneracy. The splitting of the term is 
conveniently specified by the parameter A, which is the energy separation between the two 
components. The position is summarised in the Figure, where the splitting of a 3Tl,-term 
on reduction of the symmetry to tetragonal is shown. A is defined as positive when the 
orbital singlet lies lowest.' An E-term is split into two orbital singlets, separated by A. 
An arbitrary definition of the sign of A in this case is introduced later. 

The crystal-field potential for an octahedron of charges, distorted by extension or com- 
pression along a four-fold axis, is 

In this formula the first term is of cubic symmetry, the second term introduces the 
tetragonal ligand-field component. Such a distortion reduces the symmetry from Oh to 
Dlh. This potential also suffices 
for a tetrahedron of charges, distorted by extension or compression along a two-fold axis. 

The axis of the distortion is defined as the Z-direction. 
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Then the symmetry is reduced from T d  to Dzd. For a cube so distorted the symmetry is 
reduced to D4h. 

The crystal-field potential for an octahedron of charges distorted by extension or com- 
pression along a three-fold axis is 

of the symmetry from octahedral to tetragonal 

Again, the axis of distortion is defined as the Z-direction. The distortion reduces the 
symmetry from O h  to D3d. This potential also suffices for a cube, or a tetrahedron, 
distorted along a three-fold axis. 

0, 4, symm a t  r y symmetry 

The formulae of equations (1) and (2) are the most suitable forms with which to perform 
calculations. They may be rewritten as functions of the Cartesian co-ordinates, in which 
form they are rather easier to picture. Both the potentials can be put in the form 

Vctetrag or trig) = D(x4 + y4 + z4 - 3r4/5) + C(z2 - r2/3)* (3) 

The term in D introduces the main cubic ligand-field, that in C the tetragonal or trigonal 
component. This form of the potential is responsible for the common notation for the 
ligand-field parameter, Dq. D is the constant in the potential: q is a number such that the 
matrix elements 

((mi) I x4 + y4 + 9 - 3 ~ ~ 1 5  1 (mi’)) 

are integral multiples of it. (ml) indicates a &orbital wave- 
function specified by the appropriate value of ml. 

The parameter Dq is very convenient, because the splittings of free-ion F- and D-terms 
in a weak cubic ligand-field are integral multiples of it.2 However, it may be noted that 
stronger ligand fields do not split F-terms into integral multiples of Dq.8%10111 Here, a 
ligand-field is defined as weak if it splits free-ion terms by an amount small compared to 
the separations between them.12 

In fact, q = 27/105. 

Similarly, it is possible to introduce a quantity, 9, such that the matrix elements 

are simple multiples of it. Then the parameter C? takes on the same role for the splitting 
of cubic-field T- and E-terms by a tetragonal or trigonal component that Dq has for the 
splitting of the free-ion terms, F and E,  by the main cubic field. 

The purpose of this Paper is to point out the relationship between the quantities A 
and CP. 
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The CaZcuZations.-The matrix elements of equation 4 are : l3 

4889 

In order to find the effect of the potential C(z2 - r2/3)  on the wave-functions of T- and 
E-terms, it is necessary to have these available as linear combinations of the single-electron 
wave-functions, (ml). The combinations for the 2D term of dl and the 3F and 3P terms 
of d2 are given below. <L, ML> specifies that orbital wave-function of a free-ion term 
specified by the quantum numbers L and ML.  (ml, ml') indicates a Slater determinental 
wave-function for two d-electrons of quantum numbers ml and ml'. 

(1,0> = (4/5)4(2, -2) - 5-&(1, -1) 

<I, -+I> = &(2/5)4(&2, ' f l )  T (3/5)4(&1, 0 )  
The linear combinations of free-ion (L ,  M L )  wave-functions for the terms in a cubic 

ligand-field have been given relative to both the tetragonal and trigonal axes of an octa- 
hedron or tetrahedron.l3 For the present purposes, it is convenient to use them in slightly 
different form. I t  is shown below that a derivation of the 
results for the dl- and d2-configurations is sufficient. 

They are given in Table 1. 

TABLE 1 
The linear combinations of free-ion (L,ML> wave-functions for cubic-field terms 

arising from the dl- and d2-configurations 
Free-ion Cubic-field 

term term Tetragonal axis Trigonal axis 

E, Terms.-The evaluation of the effect of the potential C(z2 - r2/3) on the orbital 
wave-functions of the E,-term of dl is straightforward. The wave-function <2, O> lies a t  

l3  B. Bleaney and K. W. H. Stevens, Reports Progr. Phys., 1953, 16, 108. 
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4Cp, 2-4[<2, 2> + <2, -211 a t  -4Cp, for the tetragonal distortion. The two wave- 
functions for the trigonal axis have zero matrix element under the potential; the term is 
not split by a trigonal component.lP For E-terms there is no obvious way of assigning the 
sign of the term splitting, A. Arbitrarily, I define A as positive for the tetragonal case when 
the wave-function <2,0> is the lower. Then A = -8Cp. 

The results for other E,-terms which arise from D free-ion ground-terms may be obtained 
from this result by treating " holes " in a filled e, orbital set as " positive electrons " and 
hence inverting the sign of the matrix elements. The technique is the same as 
that employed for deducing the splitting of free-ion ground-terms by weak cubic ligand- 
fields. In  that connexion the results for higher numbers of d-electrons are obtained from 
the splitting of the 2D term of dl and the 3F-term of d2. The splitting for d5+n is the same 
as for dn; the splitting for d 5 - n  and dlO-n is inverted relative to dn: n = 1 or 2.  Also, there 
is an inversion of the splitting pattern of cubic-field free-ion terms on passing from octa- 
hedral to  tetrahedral symmetry.15 A similar inversion holds for the splitting pattern of E, 
and other terms under the potential C(z2 - r2/3), in that C changes sign for the same 
deformation of a cube, on passing to the inscribed octahedron (see below). 

The results for the E,-terms from the D ground-terms of the configurations dl, d4, d6, 
and d9 are summarised in Table 2. 

T2g Terms.-The evaluation of the effect of the potential C(z2 - r2/3) on the wave- 
functions of the 2T2,-term of d1 is also straightforward. In tetragonal symmetry the wave- 
function 2-4[<2, 2) - <2, -2>] lies a t  -4Cfi, the two wave-functions <2, &l> lie a t  2Cp. 
When the distortion is down the three-fold axis, the wave-function <2, O> lies a t  4C9, the 
two wave-function 3-4[2:<2, &2> <2, ?1>] lie a t  -2C@. Thus 

Atetrag = 6Cp,  Atrig = --6Cp. 
For the 3T2,-term of d2, in tetragonal symmetry, the matrix elements of C(z2 - r2/3) are 
zero for each of the three wave-functions. In trigonal symmetry, the wave-function 
2-i[<3, 3) + <3, - 3>j lies at -2C@, the two wave-functions 6-4[<3, &Z> 54<3, &l>] 
at  Cp. Hence 

Atetrag = 0, Atrig = 3CP- 
The results for T2,-terms from other D and F ground-terms are obtained by considering 

the inversions which take place for " holes " in a filled t Z y  shell, and for tetrahedral 
symmetry. The result for the 2T2g-term of the spin- They are summarised in Table 2. 

TABLE 2 
The sign of the splitting, A, of terms of the same multiplicity as the ground-term, for 

the various d-electron configurations. The signs are given relative to those for 
the same terms, neglecting multiplicity, of the configuration d1 (d4, d5, ds, dg)  or 
d2 (d3, d4, d7, d8) 

Term Configuration : d3 d4 d5 de d7 d8 dg - 
- + + 

- t  + + - I 

- -* E, 
Tl, 
TZ, - - 

* 3T1, term of d4, c = -a. t 2Tz, term of ti,. 

paired configuration tzg can also be obtained by the same arguments and is included in the 
Table. The magnitude of its splitting follows the 2T2,-term of dl. 

Tu Terms.--The position for TI,-terms is more complicated, because cubic ligand- 
fields of varying strength must be dealt with. In Table 1 the linear combinations of 
free-ion wave-functions for the two Tl,-terms of d2 in a weak ligand-field are listed. At 
higher ligand-field strengths these combinations no longer apply. The wave-functions for 
the terms approach (-, & 1) and (1, - 1) etc. , as the strength increases. Here I have used 

l4 B. Bleaney, K. D. Bowers and R. S. Trenam, Proc. Roy. SOL, 1955, A ,  228, 157. 
l5 C. J. Gorter, Phys. Rev., 1932, 42, 437. 
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(-) to denote the wave-function 2-$i(2) - ( -2 ) ] .  These wave-functions correspond to 
the configuration t;g or tig . ei. 

For ligand-fields of intermediate strength, where the spliting of free-ion terms is of the 
same magnitude as the separations between them, the 3T1g-term wave-functions of d2 are 
intermediate between those of Table 1 and the configurations tig and t i 8 .  ei. They are 
conveniently expressed as linear combinations of the weak-field term wave-functions.lo 
The ground 3T1g-term, which belongs to the free-ion F-term in a weak ligand-field, gives 

yF(3T1g) = (1 + c2)-VT3TYg(F)] + c ~ [ ~ r , O , ( p ) ] ) ,  

or, more specifically, for tetragonal symmetry, 

The equivalent wave-functions for trigonal symmetry are readily obtained from Table 1. 
c is defined by the equation 

with E the lower root of the equation 

c = (6Dq + E)/4Dq. 

E2 + (6Dq - 15B)E - 16D2q2 - 9ODqB = 0. 

B is the parameter for interelectronic repulsion. 
at the limit of a weak ligand-field: it is -Q at  the limit of strong ligand-fields. 

The 3F-3P separation is 15B. c is zero 

The higher 3Tlg-term, which belongs to the free-ion P-term in a weak ligand-field, gives, 

The evaluation of the effect of the potential C(z2 - r3/3) on the wave-functions 
YF(3T1g) and YP(3TIg) is summarised in Table 3. 

TABLE 3 
The splitting parameter, A, for the  potential C(z2  - r2/3) acting on the  wave- 

functions of the  3T,g terms of d 2  
Tetragonal symmetry Trigonal symmetry 

Weak- Strong- Weak- Strong- 
Wave- field field field field 
func- limit, limit, limit, limit, 
tion General result c = o  c = - 8  General result c =  0 c =  -* 

YFs(Tl,,) [6 (7ca+ 1 2 ~  - 2)/5(1+ cz)]CP -2.4CP -6Cp [3(14c2 - 1 6 ~  + 1)/5(1 + cz)]CP 0.6CP 6Cp 
Yp3(T1,) [6(-2c2 - 1 2 ~ +  7)/5(1+ cz)]CP 8.4Cp 12Cp [3(c2 + 1 6 ~  + 14)/5(1 + c2)]CP 8.4CP 3Cp 

The results for the Tl,-terms of other configurations are given in Table 2. In that 
Table, the entry under the configuration d4 applies to only the 3T1g-term of tig. Since the 
ligand-field must be strong to force the spin-pairing, c may be taken to be -4 in this 
connexion. This 3T1g-term does not arise from a free-ion F- or P-term, so that c cannot 
be evaluated by the methods used above. 

The Relationship between the Sign of C and Molecular Geometry.-The sign of the 
constant C is derived from the molecular geometry by a further consideration of equations 
( 1 )  and ( 2 ) .  The constant A,' in equation ( 1 )  is, on the crystal-field model of an octa- 
hedron, deformed along a four-fold axis, 

A,' = 2(2~)4 (2 /5 )4 (a -~  - b-3)~e~2. 

Here, ze is the negative charge assigned to the ligand atoms, two of which are diametrically 
opposite at a distance b from the centre and four are in the plane at  a distance a. 

C = 3ze (a-3 - b-3). 

Then 
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For b < a the octahedron is compressed along the C,-axis, giving “ positive 
tetragonality ” l: C is positive. For b > a, an octahedron extended along the C,-axis 
to give “ negative tetagonality,” ,C is negative. For a tetrahedron deformed along an 
S,-axis, a tetragonal distortion, 

A ,  = 4. (2x ) i  . 10-4. (3 cos2 a - 1) . ze~2a-3: 
C = 3zea-3(3 cos2a - 1). 

C is positive for an elongation of the tetrahedron ( a  < ~oS~(3-4)). 
at the centre by a vertex and the S,-axis. 
cube along a C,-axis. 

a is the angle subtended 
Similarly, C is positive for the elongation of a 

The deformation of an octahedron along a trigonal axis leads to 

C = $(3 C O S ~  a - 1)zea-3. 
C is positive for extension [a < COS-~(~-&)]. The deformation of a tetrahedron or a cube 
along the same axis cannot be described so simply. If the action on the tetrahedron is 
the spreading out of the ligands off the three-fold axis to give CSv symmetry, C is negative. 
The compression of two opposite corners of a cube, leading to D M  symmetry, gives C 
positive. 

Two other deformations of an octahedron in relationship to the trigonal axis may also be 
considered. “ Twisting ” of the octahedron about this axis, so that one of the triangular 
faces ceased to be out of phase by x with the other face, generates a potential composed 
only of the odd spherical harmonics and consequently does not interact with the d wave- 
functi0ns.l A displacement of the octahedron along the C,-axis relative to the central ion 
gives C3v symmetry. It generates a potential which contains, as well as expressions in the 
odd spherical harmonics, the term in Y: with (see equation 2) 

E ,  a distance small compared to a, is the displacement of the central atom relative to the 
octahedron. Thus, C, 

C = yc2zea-5, 
is always positive. 

DISCUSSION 
Insufficient accurate structural data are available at present on paramagnetic complexes 

of the transition metals to permit the extensive quantitative application of the above 
theory. In effect, a portion of the theory has been used in a quantitative manner.1° The 
rapid progress taking place in the determination of such structures should make it more 
useful in the near future. Meanwhile, some general remarks may be made on its significance, 
and a semiquantitative application to certain ions in corundum undertaken. 

The general point which emerges is that a correlation between A and properties of an 
ion other than the details of the ligand distribution around it is not likely to be found. In 
some instances the sign of A for a somewhat similar type of distortion of the ligand environ- 
ment from cubic symmetry depends on the symmetry (tetragonal or trigonal) of the 
distortion. Furthermore, for Tl,-terms, given a knowledge of such details, their correlation 
with A requires that the strength of the primary cubic ligand-field relative to the inter- 
electronic repulsions be taken into account. This is seen by reference to Table 3, where 
A for one of the 3T1,-terms varies from 0.6 to 6 units, for a given trigonal component, as 
the strength of the cubic field varies from weak to strong. 

There is evidence lo that in substantially ionic environments such as in COC~,~-, A may 
be correlated in a semiquantitative fashion with the details of the departure of the ligand 
environment from cubic symmetry; in those complex ions the distortion is primarily of 
tetragonal symmetry. The spectra of a number of tervalent ions in solid solution in 
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alumina (corundum) have been interpreted, including the magnitudes of the low-symmetry 
splittings of the cubic-field terms.16-19 Estimates of the splitting of the ground-term have 
been obtain from studies of the magnetic susceptibilities of those system.20-22 I refer here 
mainly to the work of McClure.lG In these systems, the approach to the ionic model of 
the ligand-field effect is likely to be closer than for the tetrachloro-complexes. Since the 
transition-metal ion is in solid solution, its exact position in relation to the octahedron 
of 02- ions which surrounds it cannot be known, However, like the AP+ ion which it 
replaces, it must lie on the C,-axis, but displaced from the centre a t  a position of 
approximately CSv symmetry. The relationship between A and the position of the 
transition-metal ion relative to its octahedron has been discussed 16,1*,20 on the basis of a 
site symmetry lower than C3v, in the cubic weak-field limit. The only general conclusions 
that can be drawn from these treatments is that the low-symmetry ligand-field component 
approximates to trigonal symmetry, and has a value which is compatible with an environ- 
ment close to that of the AP+ ion, but with the ion shifted somewhat along the C,-axis. 

If consideration of the site-symmetry for the transition-metal ion in alumina is 
restricted to C,,, but account is taken of the strength of the octahedral ligand-field, a semi- 
quantitative description of the results can be obtained. Attention is restricted to the ions 
for which the data are available, i.e., Ti3+, V3+, Cr3+, and Mn3+. It is assumed that each 
of the ions is surrounded by the same 02- environment, and has the same value of Cp. 
Obviously, because of the differing radii of the tervalent ions, the assumption cannot be 
fully valid. and 2 for transition-metal 
ions has in general prevented quantitative estimates of Dq and C p  for them being obtained 
from first principles. However, Dq, which depends directly on 7, changes little from ion 
to ion in this series (see Table 4). It seems reasonable to suppose that CP, which depends 
on g2, also should not change much for the series. The following treatment makes no 
attempt to calculate the absolute value of A. From the molecular geometry, C is required 
to be positive. Rather the relative values of A for the terms of the series of ions are 
compared. The values of Dq and B evaluated from the spectra of the ions in alumina are 
included in Table 4. 

The lack of a knowledge of effective values for 

- 

TABLE 4 
The comparison of A obtained experimentally 3,16919-21 and calculated for the terms of 

Included are values of quantities relevant to the ions Ti3+-Mn3+ in alumina. 
the calculations. Trigonal symmetry is assumed s = A/A(sTlg(e, v3+) 

Ion Dq (cm.-] 
Ti3+ 1900 

v3+ 1750 

Cr3+ 1815 

Mn3+ 1900 

l) B (cm.-l) c Term Aoba (cm.-l) 

2E9(D) (0) * 

(90) * T2, ( F )  
"T,(P) 

650 - 0.32 4T,(F) 
4T,(F) 

- - 5T,(D) 1900 

- - 2T2g(D) ->500 - 
540 - 0.335 aT1,(F) 960 

380 
- 450 
- 400 

4T1g(P) - 800 

* See text. 

S c d c  

. >0*5 - 1.4 

1 1 
(0.1) * 0.7 
0.4 1.1 

- 0.5 - 0.7 
- 0.4 - 0.4 
- 0.9 - 0-8 
2.0 1.4 

(0) * 0 

In Table 4 the values of A for the terms of the same multiplicity as the ground term for 
the trivalent ions of the elements Ti-Mn, as determined from the spectra and magnetic 
behaviour, are listed. They are also listed as their ratio to the value of A for the 3T1,(F)- 
term of V3+ defined as unity. The value of the same ratio calculated from the preceding 

l8 D. S. McClure, J .  Chem. Phys., 1962, 36, 2757. 
l7 R. M. Macfarlane, J .  Chem. Phys., 1963, 39, 3118. 
l8 J. 0. Artman and J. C. Murphy, J .  Chem. Phys., 1963, 38, 1544. 
l9 D. L. Wood, J. Ferguson, and J. F. Dillon, J .  Chem. Phys., 1963, 39, 890. 
2o W. H. Brumage, C. R. Quade, and C. C. Lin, Phys. Rev., 1963, 131, 949. 
21 W. H. Brumage, C. R. Quade, and C. C .  Lin, J .  Chern. Phys., 1962, 37, 1368. 
22 R. M. Macfarlane, J .  Chem. Phys., 1964, 40, 373. 
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theory with constant C$ is given for each ion. For V3+ and Cr3+, which give rise to Tlg- 
terms, the value of the constant c, determined from Dq and B, and from which the ratio 
is calculated, is included. 

Table 4 shows that the main features of the trigonal splitting of the terms of the ions 
are reproduced by the theory. The 3Tlg(F)-term of V3+, for example, is split with positive 
sign as demanded by the fact that C is positive. The splitting for other terms is reversed 
in sign relative to the 3T1,(F) (V3+)-term when required, and is mostly within a factor of two 
of the predicted value. The agreement is particularly good for the three bands of W+. 
The exception to the success of the theory lies in the 3T%(F)-term of V3+ and to  a lesser 
extent the 2Eg-term of Ti3+. The splitting of those terms evidently do not reflect the 
ligand environment accurately, since it corresponds to tetragonal rather than trigonal 
symmetry. It has been suggested l6 that they are subject to a strong Jahn-Teller perturb- 
ation in addition to the trigonal crystal-field component. The agreement between theory 
and experiment cannot be expected to be better, in view of the approximations made in 
its application to the system. 

The importance of taking the present theory into account in discussing the splittings of 
terms in transition-metal complex compounds has been pointed out in a general manner 
previously.23 

The author thanks Dr. I. G. Ross for valuable discussion. 
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